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Equations for the activation free energy∆F# and preexponential factor of the rate constant of the redox
reaction X2 + ef X2

- in solution characterized by a considerable elongation of the chemical bond X-X are
obtained. Intramolecular potential energies describing the stretching vibrations along the X-X bond in the
molecule and its anion are approximated by Morse functions. The dependencies of∆F# and other characteristics
of the transition configuration on the free energy of the reaction are compared with those obtained in harmonic
approximation.

1. Introduction

Electron-transfer (ET) reactions are often accompanied by a
change of the intramolecular structure of reactants. In the case
when these changes are small, a harmonic approximation may
be satisfactorily used for the description of the structural changes
in ET kinetics in solutions. These reactions will be referred to
below as the reactions of the type A. In the framework of the
classical Marcus-Hush theory,1,2 the harmonic approximation
leads to the well-known quadratic expression for the activation
barrier

where∆F is the free energy of the transition andEs andEr are
the solvent and intramolecular reorganization energies. It is of
importance that the frequencies of all classical oscillators were
assumed to be unchanged before and after ET when deriving
eq 1.
The reorganization energyEr in eq 1 is equal to

where,µk andωk are the effective mass and frequency of the
kth normal vibration, andqki

0 andqkf
0 are the equilibrium values

of the normal coordinates before and after transition, and the
summation is performed over the degrees of freedom participat-
ing in the transition.
The reorganization energyEr along withEs is an important

parameter of the Marcus-Hush theory. A number of papers
were published recently which concern the methods of the
calculation of the reorganization energyEr.3-10

We note that the nonparabolic form of the potential curves
of the chemical bonds of the donor and acceptor species was
used for the calculation ofEr in all cited works except refs 4
and 5. For that form of curves, if ET is accompanied by a
considerable change of the reactants structure,Er calculated in
harmonic approximation seems to be inappropriate for use in

eq 1. This point is illustrated by Figure 1, which shows (for
one degree of freedom participating in the transition) a notice-
able difference between the reorganization energies calculated
with the use of harmonic and anharmonic potentials.
On the other hand, to be exact, anharmonic intramolecular

potentials should be used to derive an equation for the activation
energy of ET reactions characterized by a significant extension
(compression) of chemical bonds of reactants (products) (i.e.,
in this case one has to go beyond the harmonic approximation).
The reactions of this class will be referred to below as the
reactions of type B.
A general method was suggested in ref 11 which allows one

to consider both classical and quantum mechanical behavior of
the chemical bond in an electron-transfer reaction. A simpler
approach for the classical limit is developed in the present paper.
The results are compared quantitatively with the harmonic
approximation. In this connection, a special attention is paid
to the relation between the methods used for the calculation of
Er and the models in which the ET kinetics is described.

2. Systems

In the present paper we shall restrict ourselves by the reactions
of the type

in polar solvent where it is assumed that (1) the intramolecular
state of the electron donor N- is unchanged in the course of
the reaction, (2) only one chemical bond or normal vibration in
the electron acceptor A undergoes a reorganization in the course
of the electron transfer, and (3) the motions along all nuclear
degrees of freedom are classical. As an example of electron
acceptors of this type we would refer to diatomic halogen
molecules X2, which are often used as oxidants in organic
reactions,12 and to polyhalogen methane molecules CX4 or CF3X
(where X) Cl, Br, and I). The reduction of the latter results
in the formation of the radical anions ofC3V symmetry with
one C-X bond considerably elongated.13-15 The typical
examples of electron donors with rigid structure are ions of
polycyclic aromatic molecules or electrodes (in electrochemical
reactions). Note that if the intramolecular structure of the
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∆FM-H
# ) (Es + Er + ∆F)2/4(Es + Er) (1)

Er ) ∑
k

(µkωk
2/2)(qkf

0 - qki
0 )2 (2)

A(solv)+ N-(solv)f A-(solv)+ N(solv) (3)
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electron donor is also slightly disturbed by the ET, this effect
can be easily incorporated into the theory within developed
formalism given that the harmonic approximation is applicable
to the nuclear vibrations of the electron donor.
In what follows, we shall consider for the sake of definiteness

ET reactions between donor N- and diatomic molecules X2 as
electron acceptor

keeping in mind that all the results will be equally valid for a
more general reaction class (eq 3).

3. Model

It is assumed below that the reaction is nonadiabatic. This
means that the diabatic free energy surfaces of the initial and
final states,Ui and Uf, may be conveniently used for the
calculation of the reaction rate constant. Two components of
the reacting system (along with the electron) undergo the
reorganization in the course of the reaction. They are the inertial
solvent polarizationP and the lengthR of a chemical bond
X-X. Thus, the diabatic free energy surface of the initial state
Ui(P,R) represents the Gibbs free energy of the system involved
in the left-hand side of eq 4 as a function of the solvent
polarizationP and the intramolecular coordinateR. Similarly
the diabatic free energy surface of the final stateUf(P, R)
represents the Gibbs free energy of the system involved in the
right-hand side of eq 4. Neglecting the interaction between the
small intramolecular vibrations and the fluctuations of the
solvent polarization, we may split the diabatic free energy
surfaces into two components,US(P) and u(R), describing
separately the state of the solvent polarization and the state of
the chemical bond

where I i and If are the minimum values on the free energy
surfaces of eqs 5 and 6, respectively.
The effective Hamiltonian method11,16,17will be used for the

description of the inertial polarization. The method exploits a

well-known fact that the behavior of a linear system (i.e., the
system with linear response to an external field) may be mapped
onto the behavior of a set of harmonic oscillators with an
appropriate choice of their parameters. The inertial polarization
is, therefore, represented as a set of effective oscillators, and
the corresponding components of the free energy surfaces have
the form

whereyki
0 andykf

0 are the initial and final equilibrium values of
the coordinates of the effective oscillators. They correspond
to different initial and final equilibrium values of the solvent
polarization, which depend on the charge distribution in the
electron donor and acceptor in the initial and final states.
The potential energies of the X-X chemical bond in the

molecule X2 and its anion X2-, ui anduf, are approximated by
Morse functions similar to those of ref 18, where the gas phase
molecules of this type were considered

where

The subscripts i and f label the neutral molecule and anion,
respectively,µ is the effective mass of the stretching vibrations,
Ri
0 and Rf

0 are the equilibrium bond lengths in the neutral
molecule and anion,Di is the dissociation energy of the neutral
molecule for two atoms andDf is the energy of dissociation of
the anion with the formation of the atom X and anion X- in
the solvent, andΩi andΩf are the corresponding vibrational
frequencies. It is convenient for what follows to place the origin
of the coordinates at the point of the minimum of the initial
multidimensional free energy surface characterizing the reactants
(X2 + N-) and the solvent, i.e., to putyki

0 ) 0; Ri
0 ) 0. The

diabatic free energy surfaces take then the form

where∆R0 ) Rf
0 - Ri

0≡ Rf
0, ∆yk

0 ) ykf
0 - yki

0 , and∆F is the free
energy of the transition in the reaction complex.The introduc-
tion of∆F as a separate term means, in particular, that the values
of the solvent and inner-molecular components of the free
energy surfaces at their points of minimum are chosen to be
zero. It should be emphasized that the free energy of the
transition∆F involves the so-called work termswi andwf,1

which are the free energies required to bring the reactants and

Figure 1. Scheme illustrating the definition of the reorganization
energiesEr

h andEr
anh in harmonic approximation (curvesui

h and uf
h)

and for anharmonic potentials (curvesui
anh anduf

anh), respectively.Er
h

. Er
anh if the distance between the minima of the potential curves is

rather large.

Ui
S(P) ) 1/2∑

k

pωk(yk - yki
0 )2 (7)

Uf
S(P) ) 1/2∑

k

pωk(yk - ykf
0 )2 (8)

ui
m(R) ) Di(exp[- R(R- Ri

0)] - 1)2 (9)

uf
m(R) ) Df(exp[- â(R- Rf

0)] - 1)2 (10)

R ) (µΩi
2/2Di)

1/2 (11)

â ) (µΩf
2/2Df)

1/2 (12)

Ui(R, {yk}) ) Di[exp(- RR) - 1]2 + 1/2∑
k

pωkyk
2 (13)

Uf(R, {yk}) ) Df[exp(- â{R- ∆R0}) - 1]2 +
1/2∑

k

pωk(yk - ∆yk
0)2 + ∆F (14)

X2(solv)+ N-(solv)f X2
-(solv)+ N(solv) (4)

Ui(P, R) ) Ui
S(P) + ui(R) + I i (5)

Uf(P, R) ) Uf
S(P) + uf(R) + If (6)
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reaction products from infinity to the reaction complex position,
respectively, so that

where∆F0 is the reaction free energy. We note also that the
characteristics of both reacting species affect the value of the
free energy of the transition∆F.

4. Rate Constant: The Activation Free Energy and the
Preexponential Factor in the Model of Morse Potentials

The rate constant of the nonadiabatic reaction can be
calculated in a standard way with the use of the Fermi golden
rule.11 For the model described, in classical limit, the expres-
sions for the activation free energy and the preexponential factor
have the form (see Appendix A)

where a cap abovez and θ denotes that these quantities are
taken at the transitional configuration;γ and t are defined in
Appendix A. Vif in eq 17 is the electron resonance integral,δ
is the reaction volume,z) exp(-RR), and the intramolecular
energyEr

m is defined as follows

The set of equations forẑandθ̂ at the transitional configuration
has the form

5. Harmonic Approximation

It is of interest to compare the results obtained in the model
of Morse potentials with those in harmonic approximation when
the potential energiesui anduf are the parabolic functions

Then the quantities∆F# andA are equal to (see Appendix B)

whereν ) (Ωf/Ωi)2 and the intramolecular reorganization energy

in harmonic approximation is defined as follows

The value of the bond stretching coordinateRat the transitional
configuration is expressed throughθ̂ as follows

and θ̂ is the solution of the equation

where ∆R0 ) Rf
0 - Ri

0 ≡ Rf
0 and p and q are defined in

Appendix B. We note that eq 23 is identical to eq 1 atν ) 1.

6. Results and Discussion

Reaction 4 is considered in this section as an example for
numerical comparison between the harmonic and Morse ap-
proximations of intramolecular potentials. For our calculations
to correspond to a certain real situation, we used here for
numerical estimations the characteristics of the Cl-Cl chemical
bond in a Cl2 molecule and its anion Cl2

-. The characteristics
for the Cl2 in gas phase are given in ref 18. We can expect
that they are the same in solution since the solvation effect on
the molecule is known to be negligible. The dissociation energy
and vibration frequency for the anion Cl2

- in condensed phase
were taken from ref 19, and according to this reference these
characteristics are close to those in the gas phase.
Thus, the energyDi of the dissociation of the Cl2 molecule

for two chlorine atoms and the frequency of the valence
vibrationsΩi were taken equal to 58 kcal/mol and 559 cm-1,
respectively.18 The length of the Cl-Cl bond in the anion
Cl2

- is larger than that in the neutral molecule by about 0.63
Å,18 which is the distance∆R0 between the minima of the
corresponding potential curves. The dissociation energyDf of
the anion for the chlorine atom and the anion Cl- and the
frequencyΩf may be taken as 30 kcal/mol and 260 cm-1.19

Therefore, the considered reaction belongs to type B. It is
characterized by the very different Morse and harmonic in-
tramolecular reorganization energiesEr

m andEr
h, which being

estimated by eqs 18 and 25 with the above parameters values
are equal to 30 and 94 kcal/mol, respectively.
Since the source of the electrons for the electrochemical

reaction is the electrode, the free energy of the transition∆F
depends on the electrode potential.
The order of magnitude of the solvent reorganization energy

Es in water was estimated with the use of the ellipsoidal cavity
model.20 The Cl2 molecule in the reaction complex was
assumed to be located in the position normal to the electrode
surface, and a distance between the surface and the nearest Cl
atom to be equal to the van der Waals radius of the latter. The
negative charge (-1e) accepted by the molecule Cl2 was

Ah )
2πVif

2δ
p

{ (1- θ̂ + νθ̂)-1

4πkBT(Es + 2Er
h[ R̂

∆R0
+ ν(1- R̂

∆R0)] ν(2- θ̂)

(1- θ̂ + νθ̂)2)}
1/2

(24)

Er
h ) 1/2µΩi

2(∆R0)
2 (25)

R̂)
νθ̂∆R0

1- θ̂ + νθ̂
(26)

θ̂ +
[νθ̂2 - (1- θ̂)2]p

[1 - θ̂ + νθ̂]2
- q) 0 (27)

∆F ) ∆F0 + wf - wi (15)

∆Fm
# ) (1- ẑ)2{ Er

m

(1- γ-1/t)2
+

Es

1- ẑ+ (tDf/Di)(γ
2ẑ2t-1 - γẑt-1)} (16)

Am )
2πVif

2δ
p

{R2Di[(1 - θ̂)R2Di(2ẑ
2 - ẑ) + θ̂â2Df(2γ2ẑ2t - γẑt)]-1

4πkBT[Es + {2RDi(1- ẑ)ẑ- 2âDf(γẑ
t - γ2ẑ2t)}](dR̂dθ)θ̂}

(17)

Er
m ) ui

m(Rf
0) - ui

m(0)) Di(1- γ-1/t)2 (18)

θ̂ ) ẑ- ẑ2

ẑ- ẑ2 + (tDf/Di)(γ
2ẑ2t - γẑt)

(19)

θ̂ ) 1
2

+ ∆F
2Es

+
Df(γẑ

t - 1)2 - Di(ẑ- 1)2

2Es
(20)

ui
h(R) ) µΩi

2R2/2 (21)

uf
h(R) ) µΩf

2(R- ∆R0)
2/2 (22)

∆Fh
# ) θ̂(1- θ̂){[ ν

1- θ̂ + νθ̂]
2
Er
h + Es} + θ̂∆F (23)
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assumed to be uniformly distributed between two Cl atoms. The
semiaxes of the ellipsoid, whose lengths depend on the Cl-Cl
distance (∼2 Å) and van der Waals radius of Cl (1.88 Å), were
estimated as 5.6 and 1.8 Å, respectively. This model givesEs
∼ 30 kcal/mol.
Results of comparison of the activation free energies calcu-

lated in various models are presented in terms of the quantities
ê1 ) ∆Fh

#/∆Fm
# , ê2 ) ∆FM-H

# (2)/∆Fm
# , and ê3 ) ∆FM-H

# (3)/
∆Fm

# shown in Figure 2 where subscripts h, m, and M-H
denote the harmonic, Morse and Marcus-Hush model, respec-
tively. Curve 1 representsê1 as a function of the dimensionless
free energy of the transition∆f ) ∆F/Es. It is seen thatê1 <
1 at∆f < 0, i.e., the activation barrier∆Fh

# calculated in the
exact harmonic model (eqs 23-27) is lower than the barrier
∆Fm

# calculated in the Morse model (eqs 16-20), in spite of
the fact that the intramolecular harmonic reorganization energy
Er
h is three times as large as the Morse reorganization energy

Er
m. For example,∆Fm

# ∼ 2.5∆Fh
# at∆f ) -1. At ∆f > 0 the

difference between∆Fm
# and ∆Fh

# becomes less significant
than that at∆f < 0.
As for the quantitiesê2 andê3, it should be noted that eq 1

is not applicable immediately for the calculation of the activation
free energy of the considered reaction, since unlike eq 23 it
does not take into account the change of the intramolecular
vibrational frequency. The latter is of importance sinceΩi is
almost twice as large asΩf. In order to take account of this
fact, an average reorganization energy should be used, which
may be evaluated as

or as

In particular, an equation of type 29 has been used for the
calculation of the average reorganization energy in ref 21. The
estimations of the average reorganization energies according
to eqs 28 and 29 for the system under consideration give
Er,av
h (2) ) 57 andEr,av

h (3) ) 33 kcal/mol, respectively. These

values were used to calculate the dependencies ofê2 andê3 on
∆f according to eq 1, which are shown in Figure 2 (curves 2
and 3). It is seen thatê2 > 1, i.e.,∆FM-H

# (2) > ∆Fm
# in all

investigated range of the∆f values. On the contraryê3 < 1,
i.e.,∆FM-H

# (3) < ∆Fm
# at these values of∆f. As follows from

these curves, the difference in the activation free energies
calculated in the Morse and the harmonic approximations may
be rather significant.
Let us compare now the transitional configuration, symmetry

factor θ̂ and bond stretchingR̂ calculated in the harmonic
approximation with the use of eqs 1 and 26 and in the Morse
model (eqs 19 and 20). The results of calculations of the bond
stretching are represented in terms of quantitiesú1 ) R̂/R̂m, ú2-
(2) ) R̂M-H(2)/R̂m, andú3(2) ) R̂M-H(3)/R̂m in Figure 3. This
figure shows that the exact harmonic model (eqs 26 and 27)
underestimate considerably the values ofR̂ as compared with
the Morse model. The difference amounts to a factor of 2-5
depending on the∆f value. The simple Marcus-Hush harmonic
approximation leads to values ofR̂M-H that are different from
R̂m only at∆f far below zero (e.g.,ê2 ∼ 1.4 at∆f ) -1.3).
The dependence of the symmetry factorθ̂ on∆f in the Morse

model of the intramolecular potentials is qualitatively different
from that obtained in the exact harmonic model and in the
Marcus-Hush model (Figure 4). Figure 4 shows that unlike
eq 1 which leads to a linear dependence ofθ̂M-H on∆f (curves
3 and 4), theθ̂ vs ∆f plots are curvilinear in the Morse and
exact harmonic models, the curvature being positive for the
Morse model (curve 1) and negative for the exact harmonic
model (curve 2).
Concluding we note that the main results of the paper are

represented by eqs 16, 17, 19, and 20 for the Morse model of
the intramolecular potentials and by eqs 23, 24, 26, and 27 for
the model of harmonicVibrations with the frequency change.
Two points should be noted:
1. The numerical calculations performed demonstrate a

significant difference between the harmonic approximation (eqs
23-27) and the more realistic model for the intramolecular
potentials (eqs 16-20). The effect is expected to be more
pronounced if we pass from reaction 4 to a redox reaction in
which the geometrical structure of an electron donor N- is also
changed. It should be noted, however, that the Morse function
approaches the real potential around equilibrium and at very
large distances. In the intermediate region the Morse curve is
more smooth than the exact one.22 Therefore, if the crossing

Figure 2. Dependencies ofê1 ) ∆Fh
#/∆Fm

# , ê2 ) ∆FM-H
# (2)/∆Fm

# , and
ê3 ) ∆FM-H

# (3)/∆Fm
# on ∆f (curves 1, 2, and 3). The subscripts h,

M-H, and m correspond to the harmonic, Marcus-Hush, and Morse
models;∆f ) ∆F/Es, ∆F andEs are the free energy of the transition
and the solvent reorganization energy, and∆FM-H

# (2) and∆FM-H
# (3)

are the values calculated with the use of the average reorganization
energies given by eqs 28 and 29 in the text, respectively.

Figure 3. Dependencies ofú1 ) R̂h/R̂m, ú2 ) R̂M-H(2)/R̂m, andú3 )
R̂M-H(3)/R̂m on ∆f (curves 1, 2, and 3);R̂M-H(2) andR̂M-H(3) are the
values calculated with the use of the average reorganization energies
given by eqs 28 and 29 in the text, respectively.

Er,av
h (2)) µ(Ωi

2 + Ωf
2)(∆R0)

2/4) (Er,i
h + Er,f

h )/2 (28)

Er,av
h (3)) µ(∆R0)

2(Ωi
2 Ωf

2)/(Ωi
2 + Ωf

2) )

2(Er,i
h Er,f

h )/(Er,i
h + Er,f

h ) (29)
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point R̂m of the initial and final potential curves is far from
Ri
0, the evaluations with the use of eqs 16-20 will give the

upper bound of the effect only. However, for the system
Cl2/Cl2

- considered in this paper the values ofR̂m are close to
Ri
0, being larger by 0.12-0.5 Å thanRi

0 in the investigated
interval of the reaction free energies. Thus, the curves shown
in Figures 2-4 seem to describe the effects rather accurately.

2. The value of the reorganization energyEr
h may differ

considerably fromEr
m for the reactions of the B type. More-

over, the form of expressions for∆F# is quite different in the
harmonic and Morse models. This results in the fact, both the
numerical Valuesof ∆F# and the shapes of the∆F# vs ∆F
dependence are different in both approximations of the intramo-
lecular potential. Thus, theformal analysisof the numerical
values of the intramolecular reorganization energies,without
the reference to the concrete model, is insufficient for the
characterization of the elementary act of the B type reactions.
We emphasize that the numerical value ofEr is closely related
with the model used. Therefore, the reorganization energy
obtained in terms of the Morse approximation of the intramo-
lecular potentials, strictly speaking, may not be used for the
estimation of∆F# in the framework of equations of the harmonic
approximation, if the corresponding reaction is accompanied
by a considerable elongation (or shortening) of chemical bonds.
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Appendix A. Derivation of Eqs 16-20

If the intramolecular vibrations in the molecule X2 and its
anion are classical, the rate constant of the nonadiabatic ET
reaction may be calculated starting from eq A123

where

andVif andδ are the electron resonance integral and reaction
volume. The quantitiesθ̂ and R̂ are determined by a set of
coupled equations

The quantityθ̂ is the symmetry factor23 that depends on the
free energy of the transition∆F, on the solvent reorganization
energyEs, and on the spectroscopic parameters of the chemical
bond X-X in the molecule and anion. The free energy surfaces
Ui andUf are defined in eqs 13 and 14. The intramolecular
potentialsui

m anduf
m (eqs 9 and 10) may be written in the form

where new notations are introduced as follows

Calculation of the second derivative of the functionui
m with

respect toR at the pointRi
0 gives

The second derivative ofH with respect toθ in eq A1 is
calculated with due account of the fact that the functionsui

m

anduf
m depend onθ throughz(R). This gives

where first derivatives ofui
m anduf

m have the form

The second derivative d2f/dR2 at the pointR̂(θ̂) is calculated
with the use of eqs A4, A9, and A10 as follows

Figure 4. Dependencies ofθ̂M-H on ∆f in the Morse and harmonic
approximations (curves 1 and 2), and in the Marcus-Hush approxima-
tion (curves 3 and 4 corresponding to the reorganization energies
calculated according to eqs 28 and 29 in the text).

k)
2πVif

2δ
p [ d2ui

m/dR2|Ri0
2πkBT|d2H/dθ2|θ̂|d2f/dR2|R̂(θ̂)]

1/2

exp[- ∆F#

kBT]
(A1)

∆F# ) θ̂2Es + ui
m(R̂(θ̂)) - ui

m(Ri
0) (A2)

H ) θ∆F + θ(1- θ)Es + (1- θ)ui
m + θuf

m - ui
m(Ri

0)

(A3)

f ) (1- θ)ui
m + θuf

m (A4)

(1- θ)
dUi(R, {yk})

dR
+ θ

dUf(R, {yk})
dR

) 0

Ui(R, {yk}) ) Uf(R, {yk}) (A5)

ui
m ) Di(z- 1)2 (A6)

uf
m ) Df(γz

t - 1)2 (A7)

z) exp(- RR), z) 1 atR) 0, andz) 0 atRf ∞ (A8)

γ ) exp(â∆R0) (A9)

t ) â/R (A10)

d2ui
m

dR2
|
Ri0

) 2R2Di (A11)

d2H

dθ2|
θ̂
≈ -2Es - 2(duimdR -

duf
m

dR)
R̂(θ̂)

(dRdθ)
θ̂

(A12)

dui
m

dR
) 2RDiz(1- z) (A13)

duf
m

dR
) 2âDf(γz

t - γ2z2t) (A14)

d2f

dR2|R̂(θ̂) ) 2R2Di(1- θ̂)(2ẑ2 - ẑ) + 2â2Dfθ̂(2γẑ2t - γẑt)

(A15)
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Taking into account that in the coordinate system chosen
ui
m(Ri

0) ) 0 and using eqs A1, A2, and A5-A15, we obtain eqs
16-20.

Appendix B. Derivation of Eqs 23, 24, and 27

Substituting eqs 21 and 22 for the potentialsui
h and uf

h in
harmonic approximation into eqs A5, we obtain a set of two
coupled equations for the coordinates of the saddle pointR̂and
θ̂ in harmonic approximation

They are reduced to eqs 26 and 27 if the following notations
are introduced:ν ) (Ωf/Ωi)2, p ) νEr

h/2Es, q ) 1/2 + ∆F/2Es,
andEr

h ) µΩi
2(∆R0)2/2

Taking into account the relationship betweenR̂ and θ̂ (eq
B1) and explicit form of the potentialsui

h anduf
h (eqs 21 and

22), we obtain for the second derivative ofH

The calculation of the second derivatives ofui
h and f (eq A4)

overR gives

Insertion of eqs B1 and B3-B5 into eqs A1 and A2 leads to
eqs 23 and 24.

References and Notes

(1) Marcus, R. A.J. Chem. Phys. 1956, 24, 966.
(2) Hush, N. S.Trans. Faraday Soc. 1961, 57, 557.
(3) Eberson, L.; Gonzalez-Luque, R.; Lorentzon, J.; Merchan, M.; Roos,

B. O. J. Am. Chem. Soc. 1993, 115, 2898.
(4) Mikkelsen, K. V.; Pedersen, S. U.; Lund, H.; Swanstrom, P.J. Phys.

Chem. 1991, 95, 8892.
(5) Jakobsen, S.; Mikkelsen K. V.; Pedersen, S. U.J. Phys. Chem.

1996, 100, 7411.
(6) Nelsen, S. F.; Blackstock, S. C.; Kim, Y.J. Am. Chem. Soc. 1987,

109, 677.
(7) Klimkans, A.; Larsson, S.Chem. Phys. 1994, 189, 25.
(8) Bu, Y.; Song, X.J. Phys. Chem. 1994, 98, 2290.
(9) Bu, Y. J. Phys. Chem. 1994, 98, 5049.
(10) Bu, Y.; Song, X.; Deng, C.Chem. Phys. Lett. 1996, 250, 455.
(11) Kuznetsov, A. M.Charge Transfer in Physics, Chemistry and

Biology; Gordon & Breach: Reading, UK, 1995.
(12) Eberson, L.Electron Transfer Reactions in Organic Chemistry;

Springer-Verlag: Berlin, 1987.
(13) Roszak, S.; Koski, W. S.; Kaufman, J. J.; Balasubramanian, K.J.

Chem. Phys. 1997, 106, 7709.
(14) Roszak, S.; Kaufman, J. J.; Koski W. S.; Vijayakumar, M.;

Balasubramanian, K.J. Chem. Phys. 1994, 101, 2978.
(15) Muto, H.; Nunome, K.J. Chem. Phys. 1991, 94, 4741.
(16) Dogonadze, R. R.; Kuznetsov, A. M.Elektokhimiya1971, 7, 763.
(17) Caldeira, A. O.; Leggett, A. J.Ann. Phys. 1983, 143, 374.
(18) Dojahn, J. G.; Chen, E. C. M.; Wentworth, W. E.J. Phys. Chem.

1996, 100, 9649.
(19) Hynes A. J.; Wine, P. H.J. Chem. Phys. 1988, 89, 3565.
(20) German, E. D.; Kuznetsov, A. M.; Tikhomirov V. A.J. Electroanal.

Chem.1997, 420, 235.
(21) Grampp, G.; Jaenicke, W.Ber. Bunsen-Ges. Phys. Chem. 1991,

95, 904.
(22) Slater, J. C.Electronic Structure of Molecules; McGraw-Hill: New

York, 1963.
(23) German, E. D.; Kuznetsov, A. M.J. Phys. Chem. 1994, 98, 6120.

d2f

dR2|R̂(θ̂) ) (1- θ̂)µΩi
2 + θ̂µΩf

2 (B5)

θ̂ )
Ωi

2R̂

(Ωi
2 - Ωf

2)R̂+ Ωf
2∆R0

(B1)

θ̂ ) 1
2

+ ∆F
2Es

+
Er
h Ωf

2[(1 - θ̂)2Ωi
2 - θ̂2Ωf

2]

2Es[(1 - θ̂)Ωi
2 + θ̂Ωf

2]2
(B2)

d2H

dθ2|
θ̂

) -2{Es + 2Er
h[ R̂

∆R0
+ ν(1- R̂

∆R0)] ν(2- θ̂)

(1- θ̂ + νθ̂)2}
(B3)

d2ui
h

dR2
|
Ri0

) µΩi
2 (B4)

Nonadiabatic Redox Reactions in Solutions J. Phys. Chem. A, Vol. 102, No. 21, 19983673


