3668 J. Phys. Chem. A998,102,3668-3673

Nonadiabatic Redox Reactions in Solution: A Model of Two Classical Morse Potentials and
Its Comparison with Harmonic Approximation
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Equations for the activation free energy* and preexponential factor of the rate constant of the redox
reaction % + e— X, in solution characterized by a considerable elongation of the chemical bedaxe
obtained. Intramolecular potential energies describing the stretching vibrations along-¥&ofid in the
molecule and its anion are approximated by Morse functions. The dependentlgsanfd other characteristics

of the transition configuration on the free energy of the reaction are compared with those obtained in harmonic
approximation.

1. Introduction eq 1. This point is illustrated by Figure 1, which shows (for
Electron-transfer (ET) reactions are often accompanied by aone de_gfee of freedom participating In the transm(_)n) a notice-
able difference between the reorganization energies calculated

change of the intramolecular structure of reactants. In the case . . .
with the use of harmonic and anharmonic potentials.

when these changes are small, a harmonic approximation may On the other hand, to be exact, anharmonic intramolecular
be satisfactorily used for the description of the structural changes . ’ o ) o
potentials should be used to derive an equation for the activation

g‘ei-l\;vk;r;itcesrlenascct)ilgsgr;'thzhg;z rﬁéﬁaot%sevx!nlzgvzifﬁ(r;eﬂgce) energy of ET reactions pharacterized by a significant extensjon

classical MarcusHush theory,2 the harmonic approximation _(compressmn) of chemical bonds of reactants (produqts) (_|.e.,

leads to the well-known quadratic expression for the activation in this case one has togo beyo_nd the harmonic approximation).

barrier The reactions of this class will be referred to below as the
reactions of type B.

A general method was suggested in ref 11 which allows one
to consider both classical and quantum mechanical behavior of
. . the chemical bond in an electron-transfer reaction. A simpler
whereAF is the free energy of the transition adandE- are  annr0ach for the classical limit is developed in the present paper.
the solvent and intramolecular reorganization energies. Itis of The results are compared quantitatively with the harmonic
importance that the frequencies of all classical oscillators Were approximation. In this connection, a special attention is paid
assumed to be unchanged before and after ET when derivingy, the relation between the methods used for the calculation of

eq 1. . . . E; and the models in which the ET kinetics is described.
The reorganization enerdy in eq 1 is equal to

AF}_ = (E;+ E, + AF)4(E, + E) 1)

2. Systems

_ 2oy _ 10)2
E= Z(”WK/Z)(% ) @ In the present paper we shall restrict ourselves by the reactions
of the type

where,ux and wy are the effective mass and frequency of the B B
kth normal vibration, andj, andg) are the equilibrium values A(solv) + N (solv)— A" (solv) + N(solv) 3)
of the normal coordinates before and after transition, and the .

summation is performed over the degrees of freedom participat-'n polar solvent where it is assumed that (1) the intramolecular
ing in the transition state of the electron donorNis unchanged in the course of

The reorganization energs; along with Es is an important the reaction, (2) only one chemical bond or n_om_]al \_/ibration in
parameter of the MarctsHush theory. A number of papers the electron acceptor A undergoes a reorganization in the course

were published recently which concern the methods of the of the electron transfer, and (3) the motions along all nuclear
calculation of the reorganization energy®10 degrees of freedom are classical. As an example of electron

We note that the nonparabolic form of the potential curves acceptors of this type we would refer to diatomic halogen

of the chemical bonds of the donor and acceptor species wagmolecules %, which are often used as oxidants in organic

i 2
used for the calculation c&; in all cited works except refs 4  'eactions?and to polyhalogen methane molecules,@KCF:X
and 5. For that form of curves, if ET is accompanied by a _(where X= C_l’ Br, and I). '_I'he re(_juctlon of the latter re_sults
considerable change of the reactants structrealculated in N the formation of the radical anions @, symmetry with

> i 15 i
harmonic approximation seems to be inappropriate for use in ©"¢ C-X bond considerably elongaté#.*> The typical
examples of electron donors with rigid structure are ions of

* Corresponding author. Present address: 11/17 Burla str., 32812 Haifa, POlycyclic aromatic molecules or electrodes (in electrochemical
Israel. E-mail: c1447543@techst02.technion.ac.il. reactions). Note that if the intramolecular structure of the
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Figure 1. Scheme illustrating the definition of the reorganization
energiesE" and E*™ in harmonic approximation (curves' and uf)

and for anharmonic potentials (curve®" and ui"™), respectively E/

> E™™if the distance between the minima of the potential curves is
rather large.

electron donor is also slightly disturbed by the ET, this effect
can be easily incorporated into the theory within developed
formalism given that the harmonic approximation is applicable
to the nuclear vibrations of the electron donor.

In what follows, we shall consider for the sake of definiteness
ET reactions between donorNind diatomic molecules >as
electron acceptor

X,(solv) + N (solv) = X, (solv) + N(solv) (4)
keeping in mind that all the results will be equally valid for a
more general reaction class (eq 3).

3. Model
It is assumed below that the reaction is nonadiabatic. This

means that the diabatic free energy surfaces of the initial and

final states,U; and U;, may be conveniently used for the
calculation of the reaction rate constant. Two components of
the reacting system (along with the electron) undergo the

reorganization in the course of the reaction. They are the inertial

solvent polarizationP and the lengthR of a chemical bond
X—X. Thus, the diabatic free energy surface of the initial state
Ui(P, R) represents the Gibbs free energy of the system involved
in the left-hand side of eq 4 as a function of the solvent
polarizationP and the intramolecular coordinae Similarly

the diabatic free energy surface of the final stalgP, R)

represents the Gibbs free energy of the system involved in the

right-hand side of eq 4. Neglecting the interaction between the
small intramolecular vibrations and the fluctuations of the
solvent polarization, we may split the diabatic free energy
surfaces into two componentt)S(P) and u(R), describing

separately the state of the solvent polarization and the state of

the chemical bond

U(P,R) = U(P) + u(R) + 1, (5)

(6)

wherel; and |; are the minimum values on the free energy
surfaces of eqs 5 and 6, respectively.

The effective Hamiltonian methdH6-17will be used for the
description of the inertial polarization. The method exploits a

Uy(P, R) = UP(P) + w(R) + I
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well-known fact that the behavior of a linear system (i.e., the
system with linear response to an external field) may be mapped
onto the behavior of a set of harmonic oscillators with an
appropriate choice of their parameters. The inertial polarization
is, therefore, represented as a set of effective oscillators, and
the corresponding components of the free energy surfaces have
the form

U(P) = %Zhwk(yk — o) (7)

UR(P) = %Zhwk(yk — Vo)’ (8)

wherey?, andyp; are the initial and final equilibrium values of
the coordinates of the effective oscillators. They correspond
to different initial and final equilibrium values of the solvent
polarization, which depend on the charge distribution in the
electron donor and acceptor in the initial and final states.

The potential energies of the-XX chemical bond in the
molecule % and its anion X, u; andu, are approximated by
Morse functions similar to those of ref 18, where the gas phase
molecules of this type were considered

u"(R) = Dy(exp[— a(R — R)] — 1)° 9
u'(R) = Dy(exp[— AR — Rl — 1) (10)
where
o = (uQ?2D)"? (11)
B = (uQZ2D,)"? (12)

The subscripts i and f label the neutral molecule and anion,
respectivelyu is the effective mass of the stretching vibrations,
R’ and R’ are the equilibrium bond lengths in the neutral
molecule and aniorD; is the dissociation energy of the neutral
molecule for two atoms anbs is the energy of dissociation of
the anion with the formation of the atom X and anion X

the solvent, and?; and Q; are the corresponding vibrational
frequencies. Itis convenient for what follows to place the origin
of the coordinates at the point of the minimum of the initial
multidimensional free energy surface characterizing the reactants
(X2 + N7) and the solvent, i.e., to pyf, = 0; R® = 0. The
diabatic free energy surfaces take then the form

Ui(R {yd) = Dilexp(— aR) — 1]’ + %Zhwkfk (13)

U(R, {yi}) = Dfexp(— B{R — ARg}) — 1]° +
l/ZZhwk(yk — AW + AF (14)

whereARy = R’ — R = R, Ay) =y — v, andAF is the free
energy of the transition in the reaction complekhe introduc-

tion of AF as a separate term means, in particulat the values

of the solvent and inner-molecular components of the free
energy surfaces at their points of minimum are chosen to be
zero. It should be emphasized that the free energy of the
transition AF involves the so-called work terms; and ws,!
which are the free energies required to bring the reactants and
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reaction products from infinity to the reaction complex position, 27V20
respectively, so that = hl
AF = AF,+w —w, (15) (1 -0+ v@)_l 12

whereAFy is the reaction free energy. We note also that the 4”kBT(E + 2Eh (1 _R ) V(ZA—G)AZ)
characteristics of both reacting species affect the value of the Al:‘>0 ARy (1-0+v0)
free energy of the transitioAF. (24)

4. Rate Constant: The Activation Free Energy and the
Preexponential Factor in the Model of Morse Potentials

The rate constant of the nonadiabatic reaction can be E' = Y uQXARy)? (25)
calculated in a standard way with the use of the Fermi golden
rule!! For the model described, in classical limit, the expres- The value of the bond stretching coordinBtat the transitional
sions for the activation free energy and the preexponential factor configuration is expressed throughas follows
have the form (see Appendix A)

in harmonic approximation is defined as follows

R= vOAR, 26
, d Y (6)
AFp=(1-2° 2
L=y and® is the solution of the equation
E, R
(16) [v6” — (1 - 6)p
1— 2+ (tD/D)(*22 - z“l] 6+ -q=0 27
(tDJD)( 2 — y27) orp O (27)

2
_ 2nVyo where ARy = R — R’ = R and p and q are defined in

Appendix B. We note that eq 23 is identical to eq vat 1.
a®D[(1 — H)a® D22 — 2) + 67 D27 — y2)] ! .
6. Results and Discussion

. R 2261 1(d
A T[E + {20Di(1 — )z — ZﬁDf(VZt -7 22)}](5)9 Reaction 4 is considered in this section as an example for
numerical comparison between the harmonic and Morse ap-
17) proximations of intramolecular potentials. For our calculations

to correspond to a certain real situation, we used here for
numerical estimations the characteristics of the Cllchemical
bond in a C} molecule and its anion ¢l The characteristics
for the Cb in gas phase are given in ref 18. We can expect
that they are the same in solution since the solvation effect on
the molecule is known to be negligible. The dissociation energy

EM = u-m(R?) — u"(0)=D,(1 — y—llt)z (18) and vibration frequency for the anio_npn condensed phase

' ! ' ! were taken from ref 19, and according to this reference these

The set of equations fdrand® at the transitional configuration ~ characteristics are close to those in the gas phase.

where a cap above and 6 denotes that these quantities are
taken at the transitional configuratiop;andt are defined in
Appendix A. Vi in eq 17 is the electron resonance integéal,
is the reaction volumez = exp(—aR), and the intramolecular
energyE" is defined as follows

has the form Thus, the energ; of the dissociation of the gimolecule
for two chlorine atoms and the frequency of the valence

. 5 P vibrations€2; were taken equal to 58 kcal/mol and 559 ¢m

0= s _ 2, (th/Di)(yzizt —,9 (19) respectively:® The length of the CFCl bond in the anion

Cl; is larger than that in the neutral molecule by about 0.63
5 _ 5 A,18 which is the distanceAR, between the minima of the
B = 1 AF Di(y 1y - D(2— 1) (20) corresponding potential curves. The dissociation enBxgyf

2 2E, 2E, the anion for the chlorine atom and the aniorr @nd the
frequencyQs may be taken as 30 kcal/mol and 260 ¢n¥
5. Harmonic Approximation Therefore, the considered reaction belongs to type B. It is

characterized by the very different Morse and harmonic in-
tramolecular reorganization energie® and E/, which being
estimated by eqs 18 and 25 with the above parameters values
are equal to 30 and 94 kcal/mol, respectively.

It is of interest to compare the results obtained in the model
of Morse potentials with those in harmonic approximation when
the potential energies; andus are the parabolic functions

uih(R) :#Qﬁ:\ﬁ/z (21) Sir!ce _the source of the electrons for the electroqhemical
reaction is the electrode, the free energy of the transitién
uP(R) _ quZ(R _ AR0)2/2 (22) depends on the electrode potential.

The order of magnitude of the solvent reorganization energy
Es in water was estimated with the use of the ellipsoidal cavity
model?® The Cb molecule in the reaction complex was

h assumed to be located in the position normal to the electrode
[1_9+—§] B+ E} +0AF (23) surface, and a distance between the surface and the nearest Cl
atom to be equal to the van der Waals radius of the latter. The
wherev = (Q¢/€2))? and the intramolecular reorganization energy negative charge {1e) accepted by the molecule ,Clvas

Then the quantitieAF* andA are equal to (see Appendix B)

AFE= (1 — 9){
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FlgEre 2.# Depende#nmes df, = ARJAF,, & = ARy, _4(2)IAF,, gnd Figure 3, Dependencies ofy = Ry/Rn, &2 = Ru_(2)/Rm, andgs =
&3 = AFy_4(3)/AF,, on Af (curves 1, 2, and 3). The subscripts h, Ru_n(3)/Rm 0N Af (curves 1, 2, and 3Ru_u(2) andRu_n(3) are the

M—H, and m correspond to the harmonic, Maretrtush, and Morse | 565 calculated with the use of the average reorganization energies
models;Af = AF/Es, AF andE; are the free energy of the transition given by egs 28 and 29 in the text, respectively.

and the solvent reorganization energy, arléﬁ‘,l,H(Z) andAFf,l,H(S)
are the values calculated with the use of the average reorganization,,5|,es were used to calculate the dependenciés ahd&; on
energies given by eqs 28 and 29 in the text, respectively. Af according to eq 1, which are shown in Figure 2 (curves 2

assumed to be uniformly distributed between two Cl atoms. The and 3). It is seen thaj, > 1, i.e., AFy_4(2) > AF} in all
semiaxes of the ellipsoid, whose lengths depend on theoCl  investigated range of thaf values. On the contrargs < 1,
distance €2 A) and van der Waals radius of Cl (1.88 A), were i.e., AFy_,(3) < AF}, at these values okf. As follows from
estimated as 5.6 and 1.8 A, respectively. This model gites these curves, the difference in the activation free energies
~ 30 kcal/mol. calculated in the Morse and the harmonic approximations may
Results of comparison of the activation free energies calcu- be rather significant.
lated in various models are presented in terms of the quantities Let us compare now the transitional configuration, symmetry
1= AF[JAF], & = AFy_(2)/AF;, and & = AFy_(3)/ factor # and bond stretchingR calculated in the harmonic
approximation with the use of eqs 1 and 26 and in the Morse

AFﬁ1 shown in Figure 2 where subscripts h, m, and-M ]
denote the harmonic, Morse and Marettush model, respec- model (eqgs 19 and 20). The results of calculations of the bond

tively. Curve 1 representy as a function of the dimensionless ~ Strétching are represented in terms of quantllies R/Rm, Co-
free energy of the transitioAf = AF/Es. It is seen thag; < (2) = Ru-+(2)/Rm, andZ3(2) = Ru-(3)/Rn in Figure 3. This
1 atAf < 0, i.e., the activation barrieAF! calculated in the ~ figure shows that the exact harmonic model (eqs 26 and 27)
exact harmonic model (eqs 227) is lower than the barrier ghned(agfégnritgdg?n?ﬂirzm‘ir?r?cga;ﬁgxz f:g?:é?;ggg
Y . e .
tAthf;C?ltC#;ttﬁg n the Morse model (e_qs—lBO), In spite of depending on thaf value. The simple MarcusHush harmonic
intramolecular harmonic reorganization energy

E:‘ is three times as large as the Morse reorganization energygpproxmaﬂon leads to values & that are different from

™ # 4 - Rm only at Af far below zero (e.g.52 ~ 1.4 atAf = —1.3).
E;. For exampleAF, ~ 2.5AF, atAf = —1. AtAf> 0 the The dependence of the symmetry fadiarn Af in the Morse

difference betweem\F[, and AFy becomes less significant 1oqe| of the intramolecular potentials is qualitatively different
than that aAf < 0. ) from that obtained in the exact harmonic model and in the
As for the quantities andgs, it should be noted thateq 1 \jarcus-Hush model (Figure 4). Figure 4 shows that unlike
is not applicable immediately for the calculation of the activation eq 1 which leads to a linear dependenc@afy on Af (curves
free energy of the considered reaction, since unlike eq 23 it 3 544 4), thed vs Af plots are curvilinear in the Morse and
does not take into account the change of the intramolecular gy ot harmonic models, the curvature being positive for the
vibrational frequency. The latter is of importance sifegis Morse model (curve 1) and negative for the exact harmonic
almost twice as large a@r. In order to take account of this  ,qqel (curve 2).
fact, an average reorganization energy should be used, which Concluding we note that the main results of the paper are
may be evaluated as represented by eqgs 16, 17, 19, and 20 for the Morse model of
the intramolecular potentials and by egs 23, 24, 26, and 27 for
E?,av(z) Z/‘(Qiz + sz)(ARO)ZM = (E:i + E:})/Z (28) the model of harmonigibrations with the frequency change.
Two points should be noted:
1. The numerical calculations performed demonstrate a
h N 2,2 2 2 0 significant difference between the harmonic approximation (egs
Erad3) = t(ARY) (827 /(7 + ) = 23—-27) and the more realistic model for the intramolecular
2(E:"i E:"f)/(E["i + Eﬂf) (29) potentials (eqs 1620). The effect is expected to be more
pronounced if we pass from reaction 4 to a redox reaction in
In particular, an equation of type 29 has been used for the which the geometrical structure of an electron donoritNalso
calculation of the average reorganization energy in ref 21. The changed. It should be noted, however, that the Morse function
estimations of the average reorganization energies accordingapproaches the real potential around equilibrium and at very
to egs 28 and 29 for the system under consideration give large distances. In the intermediate region the Morse curve is
E:a\)(Z) =57 andE:aV(3) = 33 kcal/mol, respectively. These more smooth than the exact offe Therefore, if the crossing

i
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Figure 4. Dependencies ofy—y on Af in the Morse and harmonic
approximations (curves 1 and 2), and in the Maredsish approxima-

tion (curves 3 and 4 corresponding to the reorganization energies

calculated according to egs 28 and 29 in the text).

point Ry, of the initial and final potential curves is far from
R?, the evaluations with the use of eqs-18) will give the
upper bound of the effect only. However, for the system
Cl,/CI; considered in this paper the vaIuesﬁ)j are close to
R, being larger by 0.120.5 A thanR’ in the investigated

interval of the reaction free energies. Thus, the curves shown
in Figures 2-4 seem to describe the effects rather accurately.

2. The value of the reorganization enerﬁgl may differ
considerably fronE" for the reactions of the B type. More-
over, the form of expressions f&«F* is quite different in the

harmonic and Morse models. This results in the fact, both the

numerical values of AF# and the shapes of thaF* vs AF

dependence are different in both approximations of the intramo-

lecular potential. Thus, thiormal analysisof the numerical
values of the intramolecular reorganization energieishout
the reference to the concrete mada insufficient for the

German and Kuznetsov

where

AF*= 6%+ U(R@) — u"(R) (A2)

H=0AF + 6(1 — O)E,+ (1 — O)u + 6u — u"(R)
(A3)

f=1-0)u"+6u" (A4)
andV; andd are the electron resonance integral and reaction
volume. The quantitie® and R are determined by a set of
coupled equations

dUR {yd) = dU(R{y)
_R 0w O

UiR {%}) = U(R {y})

The quantityd is the symmetry facté? that depends on the
free energy of the transitioAF, on the solvent reorganization
energyEs, and on the spectroscopic parameters of the chemical
bond X—X in the molecule and anion. The free energy surfaces
U; and Us are defined in eqs 13 and 14. The intramolecular
potentialsu™ andu;" (eqgs 9 and 10) may be written in the form

1-96)

(A5)

y'=Dyz -1y (A6)
U'=Dy(yZ — 1 (A7)

where new notations are introduced as follows
z=exp(—aR),z=1atR=0,andz=0atR— o (A8)
7 = expARy) (A9)
t=plo (A10)

Calculation of the second derivative of the functigh with
respect tR at the pointRi0 gives

characterization of the elementary act of the B type reactions.

We emphasize that the numerical valuepfs closely related

with the model used. Therefore, the reorganization energy ﬁ
obtained in terms of the Morse approximation of the intramo- R

Iecylar.potentia#l.s, strictly speaking, may not be used for Fhe The second derivative dfl with respect tof in eq Al is
estimation ofAF* in the framework of equations of the harmonic calculated with due account of the fact that the functiafis

approximation, if the corresponding reaction is accompanied m L
by a considerable elongation (or shortening) of chemical bonds. anduy;” depend org throughz(R). This gives

i

= 20D, (A11)

dZ_H ~_2E_2ﬁ]_ﬁ dr Al2
Acknowledgment. A.M.K. is grateful to the Russian Foun- de? é“ s drR  dR/&@\do/s ( )
dation for Basic Research for financial support of this work
(Grant197-03-32010a). where first derivatives ofi" andu" have the form
m
Appendix A. Derivation of Eqs 16—-20 d_ll? =2aDz(1—2) (A13)
If the intramolecular vibrations in the molecule, ¥nd its du™
anion are classical, the rate constant of the nonadiabatic ET d_I; = ZﬂDf(yz‘ — yZZZI) (A14)

reaction may be calculated starting from eg?A1

1/2
AF*

kT
(A1)

L I
R [znkBT|d2H/d62|9|dzf/dRzm(@)

The second derivative?fldR? at the pointR(9) is calculated

with the use of eqs A4, A9, and A10 as follows

ot

= 20°D,(1 — 6)(22 — 2) + 28°DH(2y? — y?)
drR?l &)

(A15)
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Taking into account that in the coordinate system chosen

uim(R-O) = 0 and using egs Al, A2, and AFA15, we obtain egs
16—20.

Appendix B. Derivation of Eqgs 23, 24, and 27

Substituting egs 21 and 22 for the potentigfsand uf’ in
harmonic approximation into eqs A5, we obtain a set of two
coupled equations for the coordinates of the saddle poartd
0 in harmonic approximation

6= R (B1)
(QF — Q)R+ QIAR,
.1, AF | E'QI( - 6)%QF - 6°Q]]
==+ —— 5> (B2
2 2B, 2EJ(1 - 6)Q%+ 697

They are reduced to egs 26 and 27 if the following notations
are introduced: = (Q/Qi)?, p = vE'2Es, q = Y, + AF/2E;,
andE" = uQ%(ARy)/2 R

Taking into account the relationship betwelrand 6 (eq
B1) and explicit form of the potentiaIEgh andu;1 (egs 21 and
22), we obtain for the second derivative lof

R R - 0)
AR, " V(l ARO) 1-6+ V@)Z]
(B3)

d’H

e R —2[ E,+ 2E"

0

The calculation of the second derivativesuﬂfandf (eq A4)
over R gives

(B4)
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&

= (1 - O)uQ?+ 6uQ?

(BS)

Insertion of eqs B1 and B3B5 into eqs Al and A2 leads to
egs 23 and 24.
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